19 为什么我只查一行的语句,也执行这么慢?
Last updated
Last updated
一般情况下,如果我跟你说查询性能优化,你首先会想到一些复杂的语句,想到查询需要返回大量的数据。但有些情况下,“查一行”,也会执行得特别慢。今天,我就跟你聊聊这个有趣的话题,看看什么情况下,会出现这个现象。
需要说明的是,如果MySQL数据库本身就有很大的压力,导致数据库服务器CPU占用率很高或ioutil(IO利用率)很高,这种情况下所有语句的执行都有可能变慢,不属于我们今天的讨论范围。
为了便于描述,我还是构造一个表,基于这个表来说明今天的问题。这个表有两个字段id和c,并且我在里面插入了10万行记录。
接下来,我会用几个不同的场景来举例,有些是前面的文章中我们已经介绍过的知识点,你看看能不能一眼看穿,来检验一下吧。
如图1所示,在表t执行下面的SQL语句:
查询结果长时间不返回。
图1 查询长时间不返回
一般碰到这种情况的话,大概率是表t被锁住了。接下来分析原因的时候,一般都是首先执行一下show processlist命令,看看当前语句处于什么状态。
然后我们再针对每种状态,去分析它们产生的原因、如何复现,以及如何处理。
如图2所示,就是使用show processlist命令查看Waiting for table metadata lock的示意图。
图2 Waiting for table metadata lock状态示意图
出现这个状态表示的是,现在有一个线程正在表t上请求或者持有MDL写锁,把select语句堵住了。
在第6篇文章《全局锁和表锁 :给表加个字段怎么有这么多阻碍?》中,我给你介绍过一种复现方法。但需要说明的是,那个复现过程是基于MySQL 5.6版本的。而MySQL 5.7版本修改了MDL的加锁策略,所以就不能复现这个场景了。
图3 MySQL 5.7中Waiting for table metadata lock的复现步骤
session A 通过lock table命令持有表t的MDL写锁,而session B的查询需要获取MDL读锁。所以,session B进入等待状态。
这类问题的处理方式,就是找到谁持有MDL写锁,然后把它kill掉。
但是,由于在show processlist的结果里面,session A的Command列是“Sleep”,导致查找起来很不方便。不过有了performance_schema和sys系统库以后,就方便多了。(MySQL启动时需要设置performance_schema=on,相比于设置为off会有10%左右的性能损失)
通过查询sys.schema_table_lock_waits这张表,我们就可以直接找出造成阻塞的process id,把这个连接用kill 命令断开即可。
图4 查获加表锁的线程id
接下来,我给你举另外一种查询被堵住的情况。
我在表t上,执行下面的SQL语句:
这里,我先卖个关子。
图5 Waiting for table flush状态示意图
这个状态表示的是,现在有一个线程正要对表t做flush操作。MySQL里面对表做flush操作的用法,一般有以下两个:
这两个flush语句,如果指定表t的话,代表的是只关闭表t;如果没有指定具体的表名,则表示关闭MySQL里所有打开的表。
但是正常这两个语句执行起来都很快,除非它们也被别的线程堵住了。
所以,出现Waiting for table flush状态的可能情况是:有一个flush tables命令被别的语句堵住了,然后它又堵住了我们的select语句。
现在,我们一起来复现一下这种情况,复现步骤如图6所示:
图6 Waiting for table flush的复现步骤
在session A中,我故意每行都调用一次sleep(1),这样这个语句默认要执行10万秒,在这期间表t一直是被session A“打开”着。然后,session B的flush tables t命令再要去关闭表t,就需要等session A的查询结束。这样,session C要再次查询的话,就会被flush 命令堵住了。
图7是这个复现步骤的show processlist结果。这个例子的排查也很简单,你看到这个show processlist的结果,肯定就知道应该怎么做了。
图 7 Waiting for table flush的show processlist 结果
现在,经过了表级锁的考验,我们的select 语句终于来到引擎里了。
上面这条语句的用法你也很熟悉了,我们在第8篇《事务到底是隔离的还是不隔离的?》文章介绍当前读时提到过。
由于访问id=1这个记录时要加读锁,如果这时候已经有一个事务在这行记录上持有一个写锁,我们的select语句就会被堵住。
复现步骤和现场如下:
图 8 行锁复现
图 9 行锁show processlist 现场
显然,session A启动了事务,占有写锁,还不提交,是导致session B被堵住的原因。
这个问题并不难分析,但问题是怎么查出是谁占着这个写锁。如果你用的是MySQL 5.7版本,可以通过sys.innodb_lock_waits 表查到。
查询方法是:
图10 通过sys.innodb_lock_waits 查行锁
可以看到,这个信息很全,4号线程是造成堵塞的罪魁祸首。而干掉这个罪魁祸首的方式,就是KILL QUERY 4或KILL 4。
不过,这里不应该显示“KILL QUERY 4”。这个命令表示停止4号线程当前正在执行的语句,而这个方法其实是没有用的。因为占有行锁的是update语句,这个语句已经是之前执行完成了的,现在执行KILL QUERY,无法让这个事务去掉id=1上的行锁。
实际上,KILL 4才有效,也就是说直接断开这个连接。这里隐含的一个逻辑就是,连接被断开的时候,会自动回滚这个连接里面正在执行的线程,也就释放了id=1上的行锁。
经过了重重封“锁”,我们再来看看一些查询慢的例子。
先来看一条你一定知道原因的SQL语句:
由于字段c上没有索引,这个语句只能走id主键顺序扫描,因此需要扫描5万行。
作为确认,你可以看一下慢查询日志。注意,这里为了把所有语句记录到slow log里,我在连接后先执行了 set long_query_time=0,将慢查询日志的时间阈值设置为0。
图11 全表扫描5万行的slow log
Rows_examined显示扫描了50000行。你可能会说,不是很慢呀,11.5毫秒就返回了,我们线上一般都配置超过1秒才算慢查询。但你要记住:坏查询不一定是慢查询。我们这个例子里面只有10万行记录,数据量大起来的话,执行时间就线性涨上去了。
扫描行数多,所以执行慢,这个很好理解。
但是接下来,我们再看一个只扫描一行,但是执行很慢的语句。
如图12所示,是这个例子的slow log。可以看到,执行的语句是
虽然扫描行数是1,但执行时间却长达800毫秒。
图12 扫描一行却执行得很慢
是不是有点奇怪呢,这些时间都花在哪里了?
如果我把这个slow log的截图再往下拉一点,你可以看到下一个语句,select * from t where id=1 lock in share mode,执行时扫描行数也是1行,执行时间是0.2毫秒。
图 13 加上lock in share mode的slow log
看上去是不是更奇怪了?按理说lock in share mode还要加锁,时间应该更长才对啊。
可能有的同学已经有答案了。如果你还没有答案的话,我再给你一个提示信息,图14是这两个语句的执行输出结果。
图14 两个语句的输出结果
第一个语句的查询结果里c=1,带lock in share mode的语句返回的是c=1000001。看到这里应该有更多的同学知道原因了。如果你还是没有头绪的话,也别着急。我先跟你说明一下复现步骤,再分析原因。
图15 复现步骤
你看到了,session A先用start transaction with consistent snapshot命令启动了一个事务,之后session B才开始执行update 语句。
session B执行完100万次update语句后,id=1这一行处于什么状态呢?你可以从图16中找到答案。
图16 id=1的数据状态
session B更新完100万次,生成了100万个回滚日志(undo log)。
带lock in share mode的SQL语句,是当前读,因此会直接读到1000001这个结果,所以速度很快;而select * from t where id=1这个语句,是一致性读,因此需要从1000001开始,依次执行undo log,执行了100万次以后,才将1这个结果返回。
注意,undo log里记录的其实是“把2改成1”,“把3改成2”这样的操作逻辑,画成减1的目的是方便你看图。
今天我给你举了在一个简单的表上,执行“查一行”,可能会出现的被锁住和执行慢的例子。这其中涉及到了表锁、行锁和一致性读的概念。
在实际使用中,碰到的场景会更复杂。但大同小异,你可以按照我在文章中介绍的定位方法,来定位并解决问题。
最后,我给你留一个问题吧。
我们在举例加锁读的时候,用的是这个语句,select * from t where id=1 lock in share mode。由于id上有索引,所以可以直接定位到id=1这一行,因此读锁也是只加在了这一行上。
但如果是下面的SQL语句,
这个语句序列是怎么加锁的呢?加的锁又是什么时候释放呢?
你可以把你的观点和验证方法写在留言区里,我会在下一篇文章的末尾给出我的参考答案。感谢你的收听,也欢迎你把这篇文章分享给更多的朋友一起阅读。
在上一篇文章最后,我留给你的问题是,希望你可以分享一下之前碰到过的、与文章中类似的场景。
@封建的风 提到一个有趣的场景,值得一说。我把他的问题重写一下,表结构如下:
假设现在表里面,有100万行数据,其中有10万行数据的b的值是’1234567890’, 假设现在执行语句是这么写的:
这时候,MySQL会怎么执行呢?
最理想的情况是,MySQL看到字段b定义的是varchar(10),那肯定返回空呀。可惜,MySQL并没有这么做。
那要不,就是把’1234567890abcd’拿到索引里面去做匹配,肯定也没能够快速判断出索引树b上并没有这个值,也很快就能返回空结果。
但实际上,MySQL也不是这么做的。
这条SQL语句的执行很慢,流程是这样的:
在传给引擎执行的时候,做了字符截断。因为引擎里面这个行只定义了长度是10,所以只截了前10个字节,就是’1234567890’进去做匹配;
这样满足条件的数据有10万行;
因为是select *, 所以要做10万次回表;
但是每次回表以后查出整行,到server层一判断,b的值都不是’1234567890abcd’;
返回结果是空。
这个例子,是我们文章内容的一个很好的补充。虽然执行过程中可能经过函数操作,但是最终在拿到结果后,server层还是要做一轮判断的。
评论区留言点赞板:
@赖阿甘 提到了等号顺序问题,时间上MySQL优化器执行过程中,where 条件部分, a=b和 b=a的写法是一样的。 @沙漠里的骆驼 提到了一个常见的问题。相同的模板语句,但是匹配行数不同,语句执行时间相差很大。这种情况,在语句里面有order by这样的操作时会更明显。 @Justin 回答了我们正文中的问题,如果id 的类型是整数,传入的参数类型是字符串的时候,可以用上索引。
不过,在MySQL 5.7版本下复现这个场景,也很容易。如图3所示,我给出了简单的复现步骤。
你可以看一下图5。我查出来这个线程的状态是Waiting for table flush,你可以设想一下这是什么原因。